Respiration NADAMPADPATP phosphorylation the Krebs cycle the electron transport chain oxidative phosphorylation 1. 2. 3. | | phosphorylation the Krebs cycle the electron transport chain oxidative phosphorylation | | |----|--|-----| | 4. | The stage of respiration during which water is evolved is: | | | | the Krebs cycle phosphorylation oxidative phosphorylation the electron transport chain | | | 5. | The net number of ATP molecules produced when one molecule of glucose passes through
anaerobic stage of respiration is: | the | | | 3 4 1 2 | | | 6. | When one molecule of high energy NAD enters the electron transfer chain during oxidative phosphorylation, the number of ATP molecules formed is: | | | | 4 3 1 2 | | | 7. | f one molecule of glucose is completely oxidised to H ₂ O and CO ₂ , a total of: | | | | 32 molecules of ATP may be produced 34 molecules of ATP may be produced 36 molecules of ATP may be produced 38 molecules of ATP may be produced | | | 8. | The Krebs cycle and oxidative phosphorylation take place in: | | | | chloroplasts cytoplasm vacuole mitochondria | | | 9. | Glycolysis takes place in: | | | | chloroplasts cytoplasm vacuole mitochondria | | | | | | Energy to convert glucose to hexose bisphosphate in phosphorylation is provided by: The stage of respiration in which glucose is converted to pyruvate is: The stage of respiration during which carbon dioxide is evolved is: - During anaerobic respiration in yeast, glucose is converted to: 10. - o oxygen and water o oxygen o water and carbon dioxide ethanol and carbon dioxide